Fraunhofer FIT

IoT and Blockchain in the Energy Transition – Use Case for the Energy Sector

Markus Eisenhauer Fraunhofer FIT

Allianza Energetica Mexico - Alemana 14. Noviembre 2018

Fraunhofer* Society

- Founded 1949
- Non-profit organization for applied research
- 73 research institutes in six thematic groups
- Ca. 23.000 employees
- Annual budget € 2.300 mio.
- Finance model: ~1/3 (industrial) contract research
 - ~1/3 research project grants
 - ~1/3 base financing (federal & states)

*Joseph von Fraunhofer (1787 – 1826) researcher, inventor, and Entrepreneur

Fraunhofer – Worldwide and Germany

Fraunhofer Institute FIT Applied Information Technology

User-Centered Information – and Communication Systems

• Goal: Optimizing usability and usefulness of IT in the Interplay with organizational work practice, structures, and processes.

Research departments:

Cooperation Systems and Augmented Reality

Innovative work
forms for the
entrepreneurial
change

Life Science Informatics

More Information for Health

Risk Management and Decision support

Analysis,
Minimizing and
Management of
risks

User-Centered Computing

User-Centered IoT and CPS

putting IoT into practice!

Our topics

Current Projects

- Optimizing Energy consumption with intelligent Realtime Monitoring and Control
- 2 Projects: ME3Gas / SEEMPubS
- Simulation and Decision support for Energy Savings
 - 3 Projects: Adapt4EE / SEAM4US / BIMERR
- Optimizing load balance in Energy Networks
 - 3 Projects: GreenCom / Flex4Grid / Storage4Grid
- Sustainable ICT-support for Smart Cities
 - 2 Projects: ALMANAC / DIMMER
- Optimzing Ressource Efficiency through process transparency in production
 - 6 Projects: BEMO-COFRA /E3-Produktion / ebbits / SynErgie / EvoloPro / eFactory
 - 2 Projects: SPIRE: MAESTRI / MONSOON
 - 3 Projects: FoF: Satisfactory / COMPOSITION/ eFactory
- Internet of Things, CPS Middleware and tools
 - 5 Projects: ECSEL / HYDRA / IMPRESS / CPSwarm / BIMERR
 - 1 Large Scale IoT Demonstrator: MONICA
 - 2 Smart Packaging Projekte: ALPINA / ICIPC
- Large-scale Emergency Management, Healthcare, HCI and multimodal support
 - 3 Projects: BRIDGE / MICA / PICASO
 - Aachen Lern and Informationssystem for deafs and hard of hearing

- Planning and operation of sector-coupled and automated energy systems
- Integration and use of information and communication technologies (e.g. blockchain technology) in energy systems
- Simulation and development of central and local energy markets
- IT security technologies for prevention, detection and reaction

DISRUPTION

Example - Music Industry

Example - Music Industry

Example - Music Industry

Software is the key to Innovation

Energy Efficient and Interoperable Smart Energy Systems for Local Communities

- FP7-Strep Smart Microgrid control on the island of FUR in Denmark using LinkSmart
- FIT Technical Coordinator

- Development of new data analysis- und aggregation methods to optimize the energy distribution in and between Microgrids
- Development of an intelligent local Energy-Production- and storage network on community level
- Investigation of virtual peer-to-peer exchange models for local energy production

Intelligent Energy Management System

09:40:36 house_house18, house_house19

consider this reduction request to be a certain success if accepted.

- Focus is on energy system efficiency instead of energy network efficiency
- New business models for load management (Demand-Side-Management)
- Aggregator as a new Player

difference is more than 5% of the reduction requested we consider the probability of success to be almost certain. If the difference is between -5% and 5% we need to consider the financial aspect to decide if it's worth or not taking the risk. 5% of the requested reduction amount is 1.15 The possible reduction is much bigger than the requested one. We can

DKK

Goal for DSOs

- Cloud-based data analytics and aggregation services for Distribution System Operators (DSO)
- Active management of electricity consumption and micro-generation
- Unifies the data exchange between DSOs and their customers
- Open control interface to building management systems, home automation systems and smart appliances

Goal for customers

- Simplify the integration of building management system and renewable energy sources
- Energy management and optimisation
 - Real-time electricity costs
 - Other incentives offered by the energy retailers.

Introducing new business models and incentives for prosumers & DSOs

Aim: avoid or reduce network reinforcement:

by enabling the coordination of local, gridconnected and mixed Energy Storage Systems (ESS)

by providing a new ICT framework for planning and optimizing ESS-based services

Scope: distribution grid level (ESS at substation level), end-user level (ESS at user premises) coordinated in conjunction with Electrical Vehicles (EVs) charging, innovative energy metering systems and energy routing systems.

Fur residential test site – Fur Skive municipality

19

SUSTAINABLE ENERGY MANAGEMENT FOR UNDERGROUND STATION

Reduction of Energy consumption of a Metro station in Barcelona by 5% under real operational conditions

SUSTAINABLE ENERGY MANAGEMENT FOR UNDERGROUND STATION

Metros are large Energy consumers - Barcelona Metro Network uses 63,1 Millions kWh/year

A third is used by the Metro stations

Savings of 5% per year, equivalents to the average consumption of **700 households**

Ventilation, Lightning, vertical Transport

- intelligent ventilation control
- intelligent Light control
- optimized transportation

Reduction Potential

	Baseline (Energy Audit)		CP0: Normal		CP1: Max Saving		CP2: Max Comfort	
Load categories	Yearly consumption (MWh)	Role Percentage	Yearly consumption (MWh)	Saving Percentage	Yearly consumption (MWh)	Saving Percentage	Yearly consumption (MWh)	Saving Percentage
Lighting	239.91	40%	187.61	22%	145.39	39%	203.93	15%
Ventilation	75.81	13%	50.72	33%	46.93	38%	48.67	36%
Escalators	37.34	6%	25.17	33%	25.17	33%	25.17	33%
Controlled Energy	353.07	59%	263.50	25%	217.48	38%	277.77	21%
Demand Driven controllable equipment	128.72	21%	128.72		128.72		128.72	
Out of Scope Equipment	118.25	20%	118.25		118.25		118.25	
Total consumption	600.04		510.47	15%	464.45	23%	524.73	13%

12 partners /6 EU Countries

Scientific

Atos

Duration: 36 months

Budget: 9 M€

COMPOSITION Blockchain Marketplace Use Case

Marketplace Sketch

Blockchain-based Security

IPR, Confidentiality and Data integrity

Log and Traceability

Introduction Project Info

Key Data

■ Duration: 03/2018 –

• Milestones: Specification 09/18

Prototype 02/20

Demonstration 06/20

Demonstration: Wildpoldsried

(Allgäu)

02/2021

■ Financial Volume: ~10.5 Mio. €

■ Funded: ~56 %

Project Support : DLR

Funding Authority: BMWi

Consortium

 Management of the Energy Campus: Wildpoldsried (Demo)

 Desing, Simulation, Smart Contracts-Bibliothek

Prototyping: EMS, Cloud, Blockchain

 Grid SP; Provisioning and Infrastructure managemnt

Local Markets; Stakeholders broker

Introduction Motivation

De-carbonization

65 % RE till 2030

De-centralization

coupling sector, Cellular principle

Digitalization

Grid building vs. smart grids

Central Question of

PebblesWhich and how can different business models be realized in regional energy supply areas, taking into account innovative technological options?

Introduction Goals

Development and demonstration of blockchain-based local energy trading and network services

Introduction

System Architecture

Introduction Blockchain-Technology

- √(P2P-) Transactions without intermediary
 - Execution
 - Billing and archiving
- ✓ Partial automation of processes
- ✓ Secure, decentralized, transparent IT infrastructure
- ✓ Access management of the data (Market Grid)
- → Comparison of different configuration options of the blockchain infrastructure in Pebbles:
 - Plattform (Ethereum, Hyperledger,...)
 - Smart Contracts

Thank you for attention!

Questions? Comments?

Contact: Markus Eisenhauer markus.eisenhauer@fit.fraunhofer.de http://www.fit.fraunhofer.de/fb/ucc_en.html

